If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2=7394
We move all terms to the left:
x^2-(7394)=0
a = 1; b = 0; c = -7394;
Δ = b2-4ac
Δ = 02-4·1·(-7394)
Δ = 29576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{29576}=\sqrt{4*7394}=\sqrt{4}*\sqrt{7394}=2\sqrt{7394}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{7394}}{2*1}=\frac{0-2\sqrt{7394}}{2} =-\frac{2\sqrt{7394}}{2} =-\sqrt{7394} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{7394}}{2*1}=\frac{0+2\sqrt{7394}}{2} =\frac{2\sqrt{7394}}{2} =\sqrt{7394} $
| -8+12x-2x+17=23 | | 5(n-5)-5(4n+5)=-4n+4n | | -8z+8=32 | | 15x-28=-13x | | -5x=3=-17 | | 5+8(-4x-7)=-16+3x | | 4x+12=8x-2 | | 6x+26-4x=38 | | | | 3x+1+3(-x+1)=4 | | -2(-x-8)=-3(-6x+5) | | 12-3=-6x | | 4(3x+5)x=5 | | x/3x+7=31 | | 60-5t=35 | | -1x+7x=24 | | -3(x+3)=-3x+6 | | {2}{3}x-28=46 | | 3x+7=-3(-x-2) | | 10a+9=4a-9 | | 7.9y-12.4-2.3y=15.6y= | | -1+3a=2(a-3) | | -3x-5=3(x+15) | | v/4=-4 | | k/18=10 | | -30=−30=-6r | | −6(−8x+6)=42x+30 | | 7x-8-3x=8x-5 | | 3x+7=-3(-x-2 | | 2(x-1)+1=3(x-1)+4 | | 8(1+6m)=2m+8 | | 6.25+x=9 |